
I-2

1

Abstract— An approach combining the SRAM-based FPGA

static cross-section with the results of fault injection campaigns

allows predicting the error rate of any implemented application.

Experimental results issued from heavy ion tests are confronted

to predictions in order to validate the proposed methodology.

Index Terms— fault tolerance, fault injection, field

programmable gate arrays, single event upsets, single event rates,

accelerated testing, space applications,

I. INTRODUCTION

IELD Programmable Gate Arrays (FPGAs) are much

appreciated by designers because they offer low cost, high

performance, fast time to market and great flexibility for the

design. Among the available technologies, SRAM-based

FPGAs are well suited for space and avionic applications for

their on-site reconfiguration [1]. Despite their attractive

characteristics, designers are often reluctant to use SRAM-

based FPGAs for critical applications, as the mission profiles

may include harsh environments in which the device is

exposed, for instance, to ionizing radiation [2][3]. Single-

Event Effects (SEE) are a well-known threat for space

systems, nowadays being also a concern for applications

devoted to operate in the earth’s atmosphere even at sea level.

The most probable consequences of impinging energetic

particles on SRAM-based FPGAs are Single-Event Upsets

(SEUs) and Multiple-Bit Upsets (MBUs) occurring either in

the embedded design or in the configuration memory. Such

faults occurring in the design are temporary and can be

recovered by a Reset. However, faults induced in

configuration memory are permanent and the only way to cope

with them is to reconfigure the FPGA. Such faults may directly

result in a “mutation” of the function implemented in the

FPGA [4][5].

Manuscript received July 13th, 2010.

R. Velazco, Laboratoire TIMA, 46 avenue Félix Viallet, 38031 Grenoble; e-

mail : raoul.velazco@imag.fr

G. Foucard, Laboratoire TIMA, 46 avenue Félix Viallet, 38031 Grenoble ; e-

mail : gilles.foucard@imag.fr

P. Peronnard, Laboratoire TIMA, 46 avenue Félix Viallet, 38031 Grenoble ;

e-mail : paul.peronnard@imag.fr

Protection against SEUs in configuration memory must be

taken into account by the designer [6]. Design level solutions,

such as the well-known Triple Modular Redundancy (TMR)

technique, are often adopted in order to build fault-tolerant

architectures in SRAM-based FPGAs [7][8], but they always

require finding a compromise between fault-tolerance and

resource overhead or performance penalty.

Radiation accelerated tests are mandatory to obtain the

sensitivity of the target device by determining its static cross-

section curve. However, this figure significantly overestimates

the sensitivity of a final application. In the case of complex

circuits such as processors, previous researches [9]

demonstrated that the dynamic cross-section of the final

application can be accurately predicted combining the static

cross-section with the results of fault injection campaigns in

which the SEUs are emulated by a suitable approach

(simulation, emulation, hardware/software fault injection….)

whose choice depends mainly on the available circuit

description.

The researches presented in this paper were done in the

context of a participation of TIMA Laboratory to the LWS-

SET (Living With a Star – Space Environment Testbeds)

NASA program. The LWS project aims at studying the solar

activity and the impact of its variations on the Earth and on

life. The SET project is the element of LWS program that

characterizes the space environment and its impact on

integrated circuit and system reliability in space. The main

goal of SET is to improve the engineering approach to

accommodation and/or mitigation of the effects of solar

variability on spacecraft design and operations. For this, the

SET spacecraft provides several slots to embed experiments

on the topic.

TIMA was in charge to develop an application able to

observe the behavior of a commercial SRAM-based FPGA and

its application. When the project started the most advanced

device was selected as a test vehicle: a Xilinx Virtex-II 1000.

In terms of logical capacity, this FPGA is a mid-range product

among the Virtex-II family.

In this paper, a state-of-the-art approach devoted to predict

the SEU error-rate will be applied to an application

implemented on a SRAM-based FPGA. In section II the error

Combining Results of Accelerated Radiation

Tests and Fault Injections to Predict the Error

Rate of an Application Implemented in SRAM-

based FPGAs

R. Velazco, G. Foucard, P. Peronnard, Members, IEEE

F

mailto:raoul.velazco@imag.fr
mailto:gilles.foucard@imag.fr
mailto:paul.peronnard@imag.fr

I-2

2

rate prediction method will be described. Fault injection

campaigns were applied using an upgraded version of the

THESIC (Testbed for Harsh Environment Studies on

Integrated Circuits) platform developed at TIMA, so-called

THESIC+. Details, experimental results and their

confrontation with measures issued from heavy-ion test

campaigns are summarized in section III. Finally, conclusions

and perspectives are discussed in section IV.

II. APPLICATION ERROR RATE PREDICTION METHOD

The CEU (Code Emulated Upsets) methodology, presented

for the first time in 2000 [9], is devoted to complex circuits

such as processors and aims at determining a realistic

prediction of the sensitivity of an application executed by the

device under test (DUT).

A. General methodology

Let’s suppose that a method allowing injecting bit-flips

randomly in both the occurrence instant and target can be

implemented for the considered DUT. The cross-section

derived from the static test strategy provides the average

number of particles of a given type which is necessary to

provoke a bit flip of one of the memory cells included in the

DUT.

If bit-blips are injected concurrently with the execution of a

given program by software and/or hardware means, it can be

derived an error rate, called tinj in the following, as the number

of detected errors divided by the number of injected bit flips:

As tinj can be interpreted as the average number of bit-flips

needed to provoke an error in the executed program, the

sensitivity to SEUs of the exercised program can be calculated

by multiplying the underlying cross-section and the error rate

issued from fault injection:

This approach to estimate the error rate was proposed and

validated for processors. The main difficulty resides in the

implementation of the fault injection strategy which must

emulate as close as possible real bit-flips affecting the

processor memory resources as the consequence of an SEU.

The accuracy of derived error rates, when compared to the

ones measured under radiation, strongly depends on the

number of memory elements included in the studied circuit

which are not accessible by means of the instruction set.

Recent experiments performed using this approach [10],

showed that predictions are very close from measured error-

rates issued from radiation ground testing (heavy ion beams,

protons) even for complex advanced processors, such as the

Power PC 7448.

B. Porting the methodology to SRAM-based FPGAs

This methodology is very well suited for SRAM-based

FPGAs as its two main limiting factors, the fault injection

mechanism and the number of accessible bits through the

instruction set, are not a concern. Indeed faults can be injected

within the configuration bitstream (such a fault injection

mechanism was presented in [11] and [12]), this does not

require to modify the application. Moreover the whole

configuration memory being accessible, any resource used by a

design can thus be targeted. This particularity should improve

the result accuracy of the methodology.

In the following are presented experimental results putting

in evidence that the error rate of applications implemented in

SRAM-based FPGA can accurately predicted by combining

measured static-cross section with data issued from HW/SW

fault-injection experiments performed off-beam during the

execution of the final application.

III. EXPERIMENTAL RESULTS

A. Testbed description

The test platform used in this work was the THESIC+

platform [13] with a daughterboard hosting the DUT: a Xilinx

Virtex-II XC2V1000 FPGA [14]. Figure 1 depicts the

architecture of the developed system, whose architecture is

built around two FPGAs. The first one, called COM FPGA,

contains a LEON2 processor. It handles the communication

between the user’s computer and the resources available on the

THESIC’s motherboard. It also monitors the DUT current in

order to protect it against latchups. Data transfers are

performed over an Ethernet network allowing a good data rate.

The 2
nd

 FPGA, called Chipset FPGA, contains the user design,

mainly used to interface the DUT with the tester’s resources.

Figure 1 : THESIC+ block diagram

The FPGA application chosen for this study is based on a

triple-DES (Data Encryption Standard) algorithm, also called

DES3 [15]. The DES algorithm encrypts 64-bit data using a

56-bit key in 16 clock cycles whereas the DES3 encryption is

achieved by three consecutive DES encryptions. Thus it

requires three 56-bit keys and 48 clock cycles.

TMR architecture was implemented on the above described

DES3 application. The current state of the TMR, the voter’s

output, is stored in a register which can be read by THESIC+.

I-2

3

When the voter does not detect an error, a zero value is loaded

in the register. Otherwise the read value corresponds to the

TMR’s branch that produced results different from the ones of

the two others replicas.

Having the possibility to observe the output of each TMR’s

branch would be a useful feature. However the experimental

setup does not have the required number of inputs/outputs to

implement that option. Thus a 3-bit register was added to the

application in order to provide information on the behavior

inside the chip. Register values are as follow:

 “0”: all branches have the same value

 “1”, “2” or “3”: is the number of the branch which provides

a result different from the two others.

 “4” : three different results

 “5”, “6” and “7”: N.A.

Moreover, the tester checks every result supplied by the

TMR application in order to detect potential errors passing

through the TMR comparator. This, combined with the content

of the 3-bit register, allows distinguishing three types of errors:

 Detected errors: the 3-bit register detects an error on one

of the branches, but the TMR is efficient and the output

result is correct.

 Falsely detected errors: the 3-bit register reports a N.A.

value and the application output is correct.

 Undetected errors: the 3-bit register reports no error,

however the supplied application output is false.

B. Radiation ground testing

Radiation ground testing was performed at the HIF (Heavy

Ion Facility) cyclotron [16] of Louvain-la-Neuve (Belgium).

Due to the allocated beam time, the studied TMR application

was exposed only to two different particle species: Carbon and

Argon. The test protocol is described in Figure 2.

Table 1 summarizes the number of application errors

observed during a radiation ground testing session. These

errors are classified according to the three categories described

in § III.A.

Table 1 : Heavy ion accelerated test results

Ions
LET

(MeV/mg/cm²)

Detected

errors

Falsely

detected

errors

Undetected

errors

Carbon 1.2 51 0 0

Argon 10.1 1,278 3 35

C. Fault injections

Fault injection campaigns where performed according to the

above described methodology. The fault injection protocol is

depicted in Figure 3. The total application execution length is

76 clock cycles. Faults are injected randomly during these 76

cycles.

In Table 2 are given results of a fault injection campaign in

which the TMR application was executed 426,217 times. A

fault was injected in each run at a random time and on a

random target memory configuration bit. Thus, the average

number of injected faults required to provoke each type of

situation can be calculated by performing the ratio between

number of observed faults and the total number of injected

faults.

Table 2: Fault injection results

Detected

errors

Falsely

detected

errors

Undetected

errors

Nb. of detected

faults
14,564 237 319

Required average

number of faults
3.42x10-2 5.56x10-4 7.48x10-4

D. Observation of the effect of faults on memory bits

configuring static and dynamic resources

Another concern was the impact of a permanent fault on the

application. For example a fault can be injected after the

resource is being used, thus not provoking an error on the

application. However this error may still be present in the next

application execution. This example takes place when the fault

is injected on a memory cell configuring a static resource. On

the other hand, a dynamic resource would be initialized upon

application start, so a fault being injected before would not be

harmful to the application.

Run TEST

DUT bitstream to

THESIC+

Configure DUT

Open shutter

Close shutter

Run application

Output

error?

Store application

outputs

Store DUT

Readback

Results to

computer

Close shutter

no

yes

Figure 2 : Heavy ion campaign flow diagram

I-2

4

In order to observe this phenomenon the application was run

twice for each injected fault. The fault is injected during the

first run, then, the second run is done without modifying the

application. 326,328 faults were injected during this

experiment.

The first obtained results are presented in Table 3. They

represent the number of injected faults that would produce an

erroneous application result in one of the two runs or in both

of them. The general observed tendency is that more errors are

obtained during the second run than in the first run. This is a

consequence of permanent faults on memory cells configuring

static resources. Indeed a fault injected during the first run may

not provoke an error during this run if the resource it

configures is not used by the application during the remaining

processing tasks. However the error will appear during the

second run as the fault is still present in the configuration

memory at very beginning of the execution.

A reverse tendency is observed for falsely detected errors as

fewer errors are recorded during the second run. A reason

could be the type of logic resources used to make this function.

Indeed this type of error appears only when the register takes

an unexpected value. This could be the case of an SEU

occurring on the register itself or on the signal routing inside

the FPGA. So, the concerned resource’s type is mainly

dynamic bits, thus the register value is reset when the second

run starts and the injected fault is wiped out.

Table 3 : Number of errors during first and second application’s runs

Detected

errors

Falsely

detected errors

Undetected

errors

1st run 11,237 (3.44 %) 178 (0.05 %) 235 (0.07 %)

2nd run 13,646 (4.18 %) 161 (0.05 %) 350 (0.11 %)

Results presented in the following focus on the injected

faults that produce different results in the two runs. The figures

given in Table 4 differentiate three types of events:

 The number of fault injections having no impact on the

application output during the first run but generating an

error in the second run. This is a typical case of a

permanent fault occurring when the resource is not used

anymore in the processing flow. However the fault is still

present during the second run and it provokes an error on

the application output.

 The number of fault injections producing a visible error in

the first run but not in the second. This is a temporary fault

as it disappears whenever the application is reset. This type

of fault affects bits configuring dynamic resources.

 The number of fault injections affecting the result during

the two application runs. This is another example of

permanent faults where the error is present on the resource

when it is critical for the application.

Temporary faults are less frequent than their permanent

counterparts. This is not really surprising as dynamic bits

represent a minority among the whole resources used by the

application.

Table 4 : Errors when application results differs in the two runs

 Number of output errors

1st result correct, 2nd result false 2535 (0.77 %)

1st result false, 2nd result correct 401 (0.12 %)

Both results false 1890 (0.58 %)

The impact of the injection time parameter is discussed in

the following. Figure 4 presents the total number of errors

versus the injection-fault time instant. The general tendency

observed is an increase over the time. Indeed the later the fault

is injected, the highest is the probability to provoke an error on

the application output.

Few errors are reported during the first 20 clock cycles as

this period corresponds to the data and key loading in the

design. The related amount of logical resources used is about

5% of the total amount used by the entire application. Most of

the errors occured between the 20th clock cycle and the end

where the encrypting process takes places involving 94% of

the resources.

Run TEST

DUT bitstream to

THESIC+

Run application

Resume

application

Results to

computer

Configure DUT

with faulty

bitstream

Configure DUT

Halt application

Injection fault in

bitstream

Readback DUT

Store application

outputs

Figure 3 : Fault injection flow diagram

I-2

5

Figure 4 : Number of fault injections provoking an error in at least one

run vs. the clock cycle during which the fault is injected

Details for each type of case enumerated in Table 4 are

proposed in Figures [5-7]. Figure 5 summarizes the number of

errors observed only during the first run versus the fault

injection time. Those errors can be typically classified as

temporary ones as they do not occur during the second run.

Taking into account that the TMR weaknesses is the output

comparator, direct hits on dynamic resources from the voter

will most probably produce an undetected error.

Figure 5 : Number of errors in the 1st run vs. instant of the fault

injection when 2nd run is correct

Figure 6 illustrates the number of errors provoked on the

application output versus the clock cycle during which the

fault is injected when the 1
st

result is correct and the 2
nd

 result

is false. In this case, most of the errors take place during the

encrypting period. As a fault injected early in the application

execution has a highest probability to have an impact during

the first run of the application, this result is clearly

understandable.

Figure 7 depicts the results when both runs outputs false and

different values. Only a few faults injected during the data

loading period allowed observing this kind of behavior. This

could be explained by the fact that logical resources are reused

several times during the encryption process. Thus, a bit-flip

corrupting the content of a static resource during this period

will not produce a different result in the following runs during

which the SEU is present from the beginning of the encryption.

Figure 6 : Number of errors in the 1st run vs. instant of the fault injection

when 2nd run is correct

Figure 7 : Number of fault injections provoking different false results in

both runs vs. the injection clock cycle

Figure 8 provides the results when outputs are identical and

false in both runs. The tendency is to observe more errors

when the fault injection takes place early in the application

execution.

Figure 8 : Number of fault injections provoking identical false results in

both runs vs. the injection clock cycle

In summary, the error profile as a function of the fault

injection time will vary according to the type of errors

observed and the nature of the logical resources being

corrupted.

I-2

6

Table 5 : Measured vs. predicted error rates for the TMR implemented in the studied FPGA

Error rate Particles
Detected

errors

Falsely detected

errors

Undetected

errors

Measured
Carbon 1.04x10-4 N/A N/A

Argon 2.84x10-3 6.67x10-6 7.56x10-5

Predicted
Carbon 9.53x10-5 1.55x10-6 2.09x10-6

Argon 1.94x10-3 3.16x10-5 4.25x10-5

E. Confrontation of measures and predicted results

The Carbon and Argon fluencies during heavy ion radiation

ground testing were respectively 492,000 and 450,000. Thus,

the application/device measured error rate can be obtained

from the ratio between the number of detected errors and the

particle fluency.

As described in §II.A the error rate of an application/device

system can be predicted by multiplying the average number of

faults required to provoke an error and the measured device

SEU static cross-section. The measured static cross-section

was 2.79x10
-3

 cm²/device for Carbon and 5.68x10
-2

 cm²/device

for Argon.

Owing that no events of interest (neither falsely detected

errors, nor undetected errors) were observed for Carbon, only

the predictions done for Argon can be confronted to measures.

The analysis of these results, depicted in Table 5, shows that

predictions are very close to measures: the maximum

underestimation factor being less than 2. This difference might

be the result of MBUs not being considered in the fault

injection campaign.

Falsely detected errors follow a reverse trend: the prediction

overestimates the measure by a factor close to 5. This could be

explained by the small number of errors of this type observed

during radiation ground testing. It is important to note that in

such a case, the prediction is certainly closer to the reality than

the measure.

IV. CONCLUSION

A state-of-the-art approach devoted to predict the error rate

of a processor executing an application was adapted to deal

with applications implemented in SRAM-based FPGAs.

Results obtained for a case study, a TMR version of a

cryptocore implemented in a Virtex II FPGA, confirmed the

validity of the adopted methodology.

Future work will be focused on obtaining more results from

radiation ground testing in order to confirm the observed

trend.. The improvement of the fault injection methodology in

order to allow a realistic simulation of MBUs, faults which

challenge state-of-the-art fault tolerance techniques, will

constitute one of the main goals of future researches in this

area.

Confronting these predictions and these measures to those

expected from the same application running on-board

LWS/Satellite is the ultimate goal of this work. The satellite

launch is expected for October 2012.

REFERENCES

[1] Michael Caffrey. “Space-based Reconfigurable Radio”, in Toomas P.

Plaks and PeterM. Athanas, editors, Proceedings of the International

Conference on Engineering of Reconfigurable Systems and Algorithms

(ERSA), pages 49–53. CSREA Press, June 2002.

[2] E. Normand, “Single-Event Effects in Avionics”, IEEE Trans. Nucl.

Sci., Vol. 43, n° 2, pp. 461-474, April 1966.

[3] T. Ma, P. Dressendorfer, “Ionizing Radiation Effects in MOS Devices

and Circuits”, Wiley Eds., New York, 1989.

[4] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, M. Wirthlin,

“SEU-induced persistent error propagation in FPGAs”, IEEE Trans.

Nucl. Sci., Vol. 52, n° 6, pp. 2438-45, 2005.

[5] M. Wirthlin , E. Johnson , N. Rollins, M. Caffrey , P. Graham, “The

Reliability of FPGA Circuit Designs in the Presence of Radiation

Induced Configuration Upsets”, Proceedings of the 11th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines,

p.133, April 09-11, 2003.

[6] F. Lima Kastensmidt, G. Neuberger, R. Fernandes Hentschke, L. Carro,

R. Reis, “Designing Fault-Tolerant Techniques for SRAM-Based

FPGAs”, IEEE Design & Test, v.21 n.6, p.552-562, November 2004.

[7] F.L. Kastensmidt, L. Sterpone, L. Carro, M.S. Reorda, “On the optimal

design of triple modular redundancy logic for SRAM-based FPGAs”,

Proc. Of Design, Automation and Test in Europe (DATE) 2005, vol. 2,

pp. 1290-5, 2005.

[8] L. Sterpone, M. Sonza Reorda , M. Violante , F. Lima Kastensmidt , L.

Carro, “Evaluating Different Solutions to Design Fault Tolerant Systems

with SRAM-based FPGAs”, Journal of Electronic Testing: Theory and

Applications, v.23 n.1, p.47-54, February 2007.

[9] Velazco R., Rezgui S., Ecoffet R., “Predicting Error Rate for

Microprocessor-Based Digital Architectures through C.E.U. (Code

Emulating Upsets) Injection”, IEEE Transaction of Nuclear Science,

Vol. 47, No. 6, Dec. 2000, pp. 2405-2411

[10] P. Peronnard, R. Ecoffet, M. Pignol, D. Bellin, R. Velazco, Predicting

the SEU Error Rate through Fault Injection for a Complex

Microprocessor, 2008 IEEE International Symposium on Industrial

Electronics, (ISIE' 2008, Cambridge,UK), 30 juin-2 juillet 2008.Xilinx,

“Virtex-II Platform FPGAs: Complete Data Sheet”,

http://www.xilinx.com, March 2005.

[11] Sterpone, L.; Violante, M.; , "A New Partial Reconfiguration-Based

Fault-Injection System to Evaluate SEU Effects in SRAM-Based

FPGAs," Nuclear Science, IEEE Transactions on , vol.54, no.4, pp.965-

970, Aug. 2007

[12] Swift, G.M.; Rezgui, S.; George, J.; Carmichael, C.; Napier, M.;

Maksymowicz, J.; Moore, J.; Lesea, A.; Koga, R.; Wrobel, T.F.; ,

"Dynamic testing of Xilinx Virtex-II field programmable gate array

(FPGA) input/output blocks (IOBs)," Nuclear Science, IEEE

Transactions on , vol.51, no.6, pp. 3469- 3474, Dec. 2004

[13] F. Faure, P. Peronnard, and R. Velazco, “Thesic+: A flexible system for

see testing”, in Proc. of RADECS, 2002.

[14] Xilinx, “Virtex-II Platform FPGAs: Complete Data Sheet”,

http://www.xilinx.com, March 2005.

[15] Opencores: http://www.opencores.org/project,des

[16] G. Berger, G. Ryckewaert, R. Harboe-Sorensen, “CYCLONE – A

Multipurpose Heavy Ion, Proton and Neutron SEE Test Site”, RADECS

Workshop, pp. 51-55, 1

